Спектры кристаллов - определение. Что такое Спектры кристаллов
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Спектры кристаллов - определение

Габитус (кристаллов); Облик кристаллов; Габитус кристалла
Найдено результатов: 45
Спектры кристаллов      
(оптические)

по структуре разнообразны. Наряду с узкими линиями они содержат широкие полосы (отношение частоты ν к скорости света с от долей до нескольких тыс. см-1) и сплошные области спектра, простирающиеся на десятки тыс. см-1 (см. Спектры оптические). В инфракрасной области спектров поглощения наблюдаются полосы, связанные с квантовыми переходами между энергетическими уровнями, обусловленными колебательными движениями частиц кристалла, которым сопутствуют изменения электрического дипольного момента: поглощается фотон и рождается квант колебаний кристаллической решётки (См. Колебания кристаллической решётки) - Фонон. Процессы, сопровождающиеся рождением нескольких фононов, "размывают" и усложняют наблюдаемый спектр. В реальном кристалле обычно есть дефекты структуры (см. Дефекты в кристаллах), вблизи них могут возникать локальные колебания, например внутренние колебания примесной молекулы. При этом в спектре появляются дополнительные линии с возможными "спутниками", обусловленными связью локального колебания с решёточными. В полупроводниках (См. Полупроводники) некоторые примеси образуют центры, в которых электроны движутся на водородоподобных орбитах. Они дают спектр поглощения в инфракрасной области, состоящий из серии линий, заканчивающихся непрерывной полосой поглощения (ионизация примеси). Поглощение света электронами проводимости и дырками в полупроводниках и металлах (См. Металлы) начинается также в инфракрасной области (см. Металлооптика). В спектрах магнитоупорядоченных кристаллов аналогично фононам проявляют себя магноны (см. Спиновые волны).

В спектре рассеянного света из-за взаимодействия света с колебаниями решётки, при которых изменяется поляризуемость кристалла, наряду с линией исходной частоты νo появляются линии, сдвинутые по обе стороны от неё на частоту решёточных колебаний, что соответствует рождению или поглощению фононов (см. Комбинационное рассеяние света, рис. 1). Акустические решёточные колебания приводят к тому, что при рассеянии света на тепловых флуктуациях у центральной (не смещенной) релеевской линии также появляются боковые спутники, обусловленные рассеянием на распространяющихся флуктуациях плотности (см. Рассеяние света).

Большинство неметаллических кристаллов за инфракрасной областью в определённом интервале частот прозрачно. Поглощение возникает снова, когда энергия фотона становится достаточно велика, чтобы вызвать переходы электронов из верхней заполненной валентной зоны в нижнюю часть зоны проводимости кристалла. Спектр этого интенсивного собственного поглощения света отображает структуру электронных энергетических зон кристалла и простирается дальше в видимый диапазон, по мере того как "включаются" переходы между др. энергетическими зонами. Положение края собственного поглощения определяет окраску идеального кристалла (без дефектов). Для полупроводников длинноволновая граница области собственного поглощения лежит в ближней инфракрасной области, для ионных кристаллов (См. Ионные кристаллы) - в ближней ультрафиолетовой области. Вклад в собственное поглощение кристалла наряду с прямыми переходами электронов дают и непрямые переходы, при которых дополнительно рождаются или поглощаются фононы. Переходы электронов из зоны проводимости в валентные зоны могут сопровождаться рекомбинационным излучением.

Электрон проводимости и дырка благодаря электростатическому притяжению могут образовать связанное состояние - экситон. Спектр экситонов может варьироваться от водородоподобных серий до широких полос. Линии экситонного поглощения лежат у длинноволновой границы собственного поглощения кристалла (рис. 2). Экситоны ответственны за электронные спектры поглощения молекулярных кристаллов. Известна также экситонная Люминесценция.

Энергии электронных переходов между локальными уровнями дефектных центров попадают обычно в область прозрачности идеального кристалла, благодаря чему они часто обусловливают окраску кристалла. Например, в щёлочно-галоидных кристаллах возбуждение электрона, локализованного в анионной вакансии (См. Вакансия) (F-центр окраски), приводит к характеристической окраске кристалла. Различные примесные ионы (например, Тl в КСl) образуют центры люминесценции в кристаллофосфорах (См. Кристаллофосфоры). Они дают электронно-колебательные (вибронные) спектры. Если электрон-фононное (вибронное) взаимодействие в дефектном центре слабое, то в спектре появляется интенсивная узкая бесфононная линия (оптический аналог линии Мёссбауэра эффекта), к которой примыкает "фононное крыло" со структурой, отражающей особенности динамики кристалла с примесью (рис. 3). С ростом вибронного взаимодействия интенсивность бесфононной линии падает. Сильная вибронная связь приводит к широким бесструктурным полосам. Поскольку часть энергии возбуждения в процессе колебательной релаксации до излучения рассеивается в остальном кристалле, максимум полосы люминесценции лежит по длинноволновую сторону от полосы поглощения (правило Стокса). Иногда к моменту испускания светового кванта в центре не успевает установиться равновесное распределение по колебательным подуровням, при этом возможна "горячая" люминесценция.

Если кристалл содержит в качестве примесей атомы или ионы переходных или редкоземельных элементов, с недостроенными f- или d-оболочками, то можно наблюдать дискретные спектральные линии, соответствующие переходам между подуровнями, возникающими в результате расщепления атомных уровней внутрикристаллическим электрическим полем (см. Кристаллическое поле, Квантовый усилитель).

Н. Н. Кристофель.

Рис. 1. Спектр комбинационного рассеяния кристалла дигидрофосфата калия (KDP) при разных температурах. По оси абсцисс отложено отношение сдвига частоты (ν - νo) к скорости света.

Рис. 2. Длинноволновый участок собственного поглощения кристалла КВr при температуре жидкого азота. Первые два интенсивных пика со стороны низких энергий соответствуют экситонам. Область собственного поглощения начинается за вторым пиком.

Рис. 3. Бесфононная линия и фононное крыло в спектре поглощения примесной молекулы NO2- в KI при температуре жидкого гелия.

Спектры оптические. Спектр атомарного водорода.

Спектры оптические. Спектр натрия.

Спектры оптические. Спектр меди.

Спектры оптические. Спектр угольной дуги (полосы молекул CN и C2).

Спектры оптические. Спектр испускания паров молекулы йода.

Спектры оптические. Сплошной спектр.

Спектры оптические. Линии поглощения (фраунгоферовы линии) в спектре Солнца.

Спектр поглощения         
  • ''F''-центров]] в кристалле [[NaCl]]
Спектр поглощения — зависимость показателя поглощения вещества от длины волны (или частоты, волнового числа, энергии кванта и т. п.) излучения. Он связан с энергетическими переходами в веществе. Для различных веществ спектры поглощения различны.
Спектры поглощения         
  • ''F''-центров]] в кристалле [[NaCl]]

Спектры оптические и Рентгеновские спектры, получаемые при пропускании через вещество и поглощении в нём соответствующего излучения.

Электронная спектроскопия         
Электронная спектроскопия является очень чувствительным и удобным методом для определения спектров поглощения, пропускания или отражения, изучения кинетики реакции, сопровождающейся спектральными изменениями.
Электронная спектроскопия         

для химического анализа (ЭСХА), то же, что Фотоэлектронная спектроскопия.

ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ         
  • Оптический путь ИК-излучения в кристалле НПВО
  • 100px
  • Уильям Кобленц
  • Ячейка с алмазными наковальнями
  • Схема спектроскопии диффузного отражения
  • ИК-спектр [[этанол]]а, записанный из плёнки вещества в режиме пропускания (''T'')
  • Схема оптического Фурье-спектрометра.<br>
Фурье-спектрометр представляет собой [[интерферометр Майкельсона]], в котором одно из зеркал выполнено подвижным, что позволяет варьировать разницу хода лучей. Смещение зеркала производится механическим приводом, управляемым ЭВМ.<br>
1 — Источник белого света или исследуемый источник;<br>
2 — Линза коллиматора;<br>
3 — Кювета с исследуемым веществом;<br>
4 — Опорный (эталонный) лазер;<br>
5 — Вспомогательные зеркала опорного пучка от лазера;<br>
6 — Фотоприёмник опорного пучка;<br>
7 — Неподвижное зеркало;<br>
8 — Подвижное зеркало;<br>
9 — Механический привод подвижного зеркала;<br>
10 — Объектив фотоприёмника;<br>
11 — Фотоприёмник;<br>
12 — Управляющий и обрабатывающий интерферограмму компьютер;<br>
13 — Светоделительная пластина.
  • Интерферограмма полихроматического излучения
  • см<sup>−1</sup>]].
  • хлорида меди(I)]]
  • ИК-спектр [[полистирол]]а
  • 100px
  • Потенциальные кривые для гармонического и ангармонического осцилляторов
  • бромида калия]]
  • Схема спектроскопии зеркального отражения
  • 100px
  • Поглощение электромагнитного излучения
  • 100px
  • 100px
  • 100px
получение и исследование спектров в инфракрасной области. Методами инфракрасной спектроскопии изучают колебательные и вращательные спектры молекул и определяют по ним химический состав и структуру молекул.
Колебательные спектры         
  • Оптический путь ИК-излучения в кристалле НПВО
  • 100px
  • Уильям Кобленц
  • Ячейка с алмазными наковальнями
  • Схема спектроскопии диффузного отражения
  • ИК-спектр [[этанол]]а, записанный из плёнки вещества в режиме пропускания (''T'')
  • Схема оптического Фурье-спектрометра.<br>
Фурье-спектрометр представляет собой [[интерферометр Майкельсона]], в котором одно из зеркал выполнено подвижным, что позволяет варьировать разницу хода лучей. Смещение зеркала производится механическим приводом, управляемым ЭВМ.<br>
1 — Источник белого света или исследуемый источник;<br>
2 — Линза коллиматора;<br>
3 — Кювета с исследуемым веществом;<br>
4 — Опорный (эталонный) лазер;<br>
5 — Вспомогательные зеркала опорного пучка от лазера;<br>
6 — Фотоприёмник опорного пучка;<br>
7 — Неподвижное зеркало;<br>
8 — Подвижное зеркало;<br>
9 — Механический привод подвижного зеркала;<br>
10 — Объектив фотоприёмника;<br>
11 — Фотоприёмник;<br>
12 — Управляющий и обрабатывающий интерферограмму компьютер;<br>
13 — Светоделительная пластина.
  • Интерферограмма полихроматического излучения
  • см<sup>−1</sup>]].
  • хлорида меди(I)]]
  • ИК-спектр [[полистирол]]а
  • 100px
  • Потенциальные кривые для гармонического и ангармонического осцилляторов
  • бромида калия]]
  • Схема спектроскопии зеркального отражения
  • 100px
  • Поглощение электромагнитного излучения
  • 100px
  • 100px
  • 100px

вибрационные спектры, спектры, обусловленные колебаниями атомов в молекуле (см. Молекулярные спектры) и атомов, ионов и их групп в кристаллах (см. Спектры кристаллов) и жидкостях. К. с. обычно состоят из отдельных спектральных полос. Наблюдаются К. с. поглощения и отражения в близкой инфракрасной области и К. с. комбинационного рассеяния (См. Комбинационное рассеяние света) в видимой области.

Инфракрасная спектроскопия         
  • Оптический путь ИК-излучения в кристалле НПВО
  • 100px
  • Уильям Кобленц
  • Ячейка с алмазными наковальнями
  • Схема спектроскопии диффузного отражения
  • ИК-спектр [[этанол]]а, записанный из плёнки вещества в режиме пропускания (''T'')
  • Схема оптического Фурье-спектрометра.<br>
Фурье-спектрометр представляет собой [[интерферометр Майкельсона]], в котором одно из зеркал выполнено подвижным, что позволяет варьировать разницу хода лучей. Смещение зеркала производится механическим приводом, управляемым ЭВМ.<br>
1 — Источник белого света или исследуемый источник;<br>
2 — Линза коллиматора;<br>
3 — Кювета с исследуемым веществом;<br>
4 — Опорный (эталонный) лазер;<br>
5 — Вспомогательные зеркала опорного пучка от лазера;<br>
6 — Фотоприёмник опорного пучка;<br>
7 — Неподвижное зеркало;<br>
8 — Подвижное зеркало;<br>
9 — Механический привод подвижного зеркала;<br>
10 — Объектив фотоприёмника;<br>
11 — Фотоприёмник;<br>
12 — Управляющий и обрабатывающий интерферограмму компьютер;<br>
13 — Светоделительная пластина.
  • Интерферограмма полихроматического излучения
  • см<sup>−1</sup>]].
  • хлорида меди(I)]]
  • ИК-спектр [[полистирол]]а
  • 100px
  • Потенциальные кривые для гармонического и ангармонического осцилляторов
  • бромида калия]]
  • Схема спектроскопии зеркального отражения
  • 100px
  • Поглощение электромагнитного излучения
  • 100px
  • 100px
  • 100px

ИК-спектроскопия, раздел спектроскопии, включающий получение, исследование и применение спектров испускания, поглощения и отражения в инфракрасной области спектра (см. Инфракрасное излучение). И. с. занимается главным образом изучением молекулярных спектров, так как в ИК-области расположено большинство колебательных и вращательных спектров молекул. В И. с. наиболее широкое распространение получило исследование ИК-спектров поглощения, которые возникают в результате поглощения ИК-излучения при прохождении его через вещество. Это поглощение носит селективный характер и происходит на тех частотах, которые совпадают с некоторыми собственными частотами колебаний атомов в молекулах вещества и с частотами вращения молекул как целого, а в случае кристаллического вещества - с частотами колебаний кристаллической решётки. В результате интенсивность ИК-излучения на этих частотах резко падает - образуются полосы поглощения (см. рис.). Количественная связь между интенсивностью I прошедшего через вещество излучения, интенсивностью падающего излучения I0 и величинами, характеризующими поглощающее вещество, даётся Бугера - Ламберта - Бера законом. На практике обычно ИК-спектр поглощения представляют графически в виде зависимости от частоты ν (или длины волны λ) ряда величин, характеризующих поглощающее вещество: коэффициента пропускания T (ν) = I (ν)/I0(ν); коэффициента поглощения А(ν) = [I0(ν) - I (ν)]/I0(ν) = 1 - Т(ν); оптической плотности D(ν) = ln[1/T(ν)] = χ(ν)cl, где χ(ν) - показатель поглощения, с - концентрация поглощающего вещества, l - толщина поглощающего слоя вещества. Поскольку D(ν) пропорциональна χ(ν) и с, она обычно применяется для количественного анализа по спектрам поглощения.

Основные характеристики спектра ИК-поглощения: число полос поглощения в спектре, их положение, определяемое частотой ν (или длиной волны λ), ширина и форма полос, величина поглощения - определяются природой (структурой и химическим составом) поглощающего вещества, а также зависят от агрегатного состояния вещества, температуры, давления и др. Изучение колебательно-вращательных и чисто вращательных спектров методами И. с. позволяет определять структуру молекул, их химический состав, моменты инерции молекул, величины сил, действующих между атомами в молекуле, и др. Вследствие однозначности связи между строением молекулы и её молекулярным спектром И. с. широко используется для качественного и количественного анализа смесей различных веществ (например, моторного топлива). Изменения параметров ИК-спектров (смещение полос поглощения, изменение их ширины, формы, величины поглощения), происходящие при переходе из одного агрегатного состояния в другое, растворении, изменении температуры и давления, позволяют судить о величине и характере межмолекулярных взаимодействий.

И. с. находит применение в исследовании строения полупроводниковых материалов, полимеров, биологических объектов и непосредственно живых клеток. Быстродействующие спектрометры позволяют получать спектры поглощения за доли секунды и используются при изучении быстропротекающих химических реакций. С помощью специальных зеркальных микроприставок можно получать спектры поглощения очень малых объектов, что представляет интерес для биологии и минералогии. И. с. играет большую роль в создании и изучении молекулярных оптических квантовых генераторов, излучение которых лежит в инфракрасной области спектра. Методами И. с. наиболее широко исследуются ближняя и средняя области ИК-спектра, для чего изготовляется большое число разнообразных (главным образом двухлучевых) спектрометров. Далёкая ИК-область освоена несколько меньше, но исследование ИК-спектров в этой области также представляет большой интерес, так как в ней, кроме чисто вращательных спектров молекул, расположены спектры частот колебаний кристаллических решёток полупроводников, межмолекулярных колебаний и др.

Лит.: Кросс А., Введение в практическую инфракрасную спектроскопию, пер. с англ., М., 1961; Беллами Л., Инфракрасные спектры молекул, пер. с англ., М., 1957; Ярославский Н. Г., Методика и аппаратура длинноволновой инфракрасной спектроскопии, "Успехи физических наук", 1957, т. 62, в. 2; Применение спектроскопии в химии, пер. с англ., М., 1959; Чулановский В. М., Введение в молекулярный спектральный анализ, 2 изд., М.-Л., 1951.

В. И. Малышев.

Зависимость интенсивности падающего I0(ν) и прошедшего через вещество I(ν) излучения. ν1, ν2, ν3,... - собственные частоты вещества; заштрихованные области - полосы поглощения.

АТОМНЫЕ СПЕКТРЫ         
  • Спектр излучения железа
  • Спектр излучения водорода
  •  Поглощение видимого спектра
ОТНОСИТЕЛЬНАЯ ИНТЕНСИВНОСТЬ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ОБЪЕКТА ИССЛЕДОВАНИЯ ПО ШКАЛЕ ЧАСТОТ
Спектр испускания; Спектры испускания; Спектр излучения; Эмиссионный спектральный анализ; Эмиссионный анализ; Атомные спектры
оптические спектры свободных или слабо связанных атомов (одноатомных газов, паров). Обусловлены квантовыми переходами атома. Атомные спектры - линейчатые, состоят из отдельных спектральных линий, которые характеризуются определенной длиной волны и для простых атомов группируются в спектральные серии. Содержат информацию о строении атомов, используются также в спектральном анализе.
Изоморфизм (кристаллохимия)         
СВОЙСТВО ЭЛЕМЕНТОВ ЗАМЕЩАТЬ ДРУГ ДРУГА В СТРУКТУРЕ КРИСТАЛЛА
Изоморфизм в кристаллах; Изоморфизм кристаллов; Изоморфизм (химия); Изовалентный изоморфизм; Гетеровалентный изоморфизм; Изовалентное замещение; Гетеровалентное замещение
Изоморфизм (от  — «равный, одинаковый, подобный» и  — «форма») — свойство элементов замещать друг друга в структуре кристалла. Изоморфизм возможен при одинаковых координационных числах атомов, а в ковалентных соединениях при тождественной конфигурации связей.

Википедия

Габитус кристаллов

Га́битус криста́ллов (лат. habitus — внешность) — наружный вид кристаллов, определяемый преобладающим развитием граней тех или иных простых форм. Примеры габитусов: призматический, бипирамидальный, ромбоэдрический, кубический и др.

Некоторые авторы в минералогии различают габитус и облик кристаллов. При этом облик относят исключительно к внешнему виду минерала — столбчатый, пластинчатый и др., а габитусом называют основные кристаллографические элементы, определяющие форму кристалла, бипирамидальный, ромбоэдрический и т. п. В этом случае минералы одного и того же облика, например столбчатого, могут иметь различный габитус, например дипирамидальный или призматический.